تبلیغات
دنیای ریاضی - توپولوژی
سه شنبه 18 اسفند 1388

توپولوژی

• نوع مطلب: موضوعات مهم ریاضیات ،
• نوشته شده توسط: متین میرباقری

توپولوژی (مکان شناسی)، مطالعه ریاضیاتی روی خصوصیاتی است که در طی تغییر شکلها ، ضربه خوردن ها و کشیده شدن اشیاء ، به طور ثابت حفظ میشوند (البته عمل پاره کردن مجاز نمی باشد). یک دایره به لحاظ توپولوژیکی هم ارز بیضی میباشد که می تواند در داخل آن با کشیده شدن تغییر شکل یابد و یک کره به سطح بیضی وار هم ارز است( یعنی یک منحنی بسته تک بعدی و بدون هیچ محل تقاطع که میتواند در فضای دو بعدی جای گیرد)، مجموعه تمام وضعیتهای ممکن برای عقربه های ساعت شمار و دقیقه شمار با هم ، به لحاظ توپولوژیکی با چنبره هم ارز است (یعنی یک سطح دوبعدی که می تواند در داخل فضای سه بعدی جای گیرد) و مجموعه تمام وضعیت های ممکن برای عقربه های ساعت شمار ، دقیقه شمار و ثانیه شمار با هم ، به لحاظ توپولوژی با یک شیء سه بعدی هم ارز می باشد.
البته توپولوژی فقط این نیست. توپولوژی با منحنی ها ، سطوح و سایر اشیاء در صفحه و فضای سه بعدی مطرح گردید. یکی از ایده های اصلی در توپولوژی این است که اشیاء فضایی مثل دایره ها و کره ها در نوع خود میتوانند به عنوان اشیاء محسوب شوند و علم اشیاء ارتباطی با چگونگی نمایش یافتن یا جای گرفتن آنها در فضا ندارد. برای مثال ، عبارت " اگر شما یک نقطه را از دایره بیرون بکشید، یک پاره خط حاصل خواهد شد " ، درست به همان اندازه که برای دایره صادق است برای بیضی و حتی دایره های پیچ خورده و گره دار نیز صدق می کند، چرا که این عبارت فقط خصوصیات توپولوژیکی را شامل می شود .
توپولوژی با مطالعه مواردی چون اشیاء فضایی از قبیل منحنی ها، سطوح، فضایی که ما آن را جهان می نامیم ، پیوستار فضا زمان با نسبیت عمومی، فراکتال ها، گره ها ، چند شکلی ها (اشیایی هستند که برخی خصوصیات فضایی اصلی آن ها مشابه با جهان ما می باشد)، فضا های مرحله ای که در فیزیک با آن ها مواجه می شئیم ( مثل فضای وضعیت های قرار گرفتن عقربه ها در ساعت) ، گروه های متقارن همچون مجموعه شیوه های چرخاندن یک رأس و غیره در ارتباط است.
توپولوژی برای جدا سازی اتصال ذاتی اشیاء و در عین حال کنار گذاشتن ساختار جزء به جزء آنها قابل استفاده می باشد.
اشیاء توپولوژیکی اغلب به صورت رسمی به عنوان فضا های توپولوژیکی تعریف می شوند. اگر دو شیء دارای خصوصیات توپولوژیکی مشابه باشند ، گفته می شود که آن ها هم ریخت هستند.البته اگر دقیق تر بگوییم ، خصوصیاتی که با کشیدن یا کج کردن یک شیء تخریب نمی شوند ، در واقع خصوصیاتی هستند که به واسطه همسانگری حفظ می شوند نه به واسطه ی هم ریختی؛ همسانگری با کج کردن اشیاء دیگر در ارتباط است در حالیکه همریختی ، خصیصه ذاتی است).
حدود سال 1900 ، (پوانکاره poincare) ، معیاری از توپولوژی را تحت عنوان هوموتوپی (Homotopy) طراحی کرد(کولینز . 2004) . به طور خاص دو شیء ریاضیاتی زمانی هوموتوپیک خوانده می شوند که یکی از آنها بتواند به طور پیوسته به شکلی مشابه شکل دیگری تغییر یابد.
توپولوژی بر سه قسم است: توپولوژی جبری(که توپولوژی ترکیبی نامیده میشود) توپولوژی نا همسان و توپولوژی کم بعدی.
یک تعریف رسمی نیز برای توپولوژی که بر حسب عملیات های مجموعه ای تعریف میشوند ، وجود دارد. یک مجموعه X به همراه یک مجموعه T از زیر مجموعه آن ، در صورتی یک توپولوژی محسوب می شود که زیر مجموعه ها در T از خصوصیات زیر پیروی نمایند:


1- زیر مجموعه های ناچیز X و مجموعه تهی در T باشند.
2- هر گاه مجموعه ای A و B در T باشند ، آنگاهA^ B
3- هر گاه دو یا چند مجموعه در T باشند آنگاه اجتماع آن ها نیز چنین است.


نظرات() 



http://kelly2glass34.beep.com
دوشنبه 16 مرداد 1396 06:41 ق.ظ
Wonderful items from you, man. I have consider
your stuff prior to and you're just too fantastic. I actually like what you have acquired right here, really like what you're saying and the best way
through which you assert it. You are making it entertaining and
you continue to care for to keep it sensible.
I cant wait to learn much more from you. This is
actually a terrific web site.
lorettemccalla.jimdo.com
جمعه 13 مرداد 1396 08:37 ب.ظ
Do you mind if I quote a couple of your posts as long as I provide credit and
sources back to your webpage? My blog is in the very same niche as yours and my visitors would really benefit from
a lot of the information you present here. Please let me know if this alright with you.
Regards!
http://altharapkin.blog.fc2.com
جمعه 6 مرداد 1396 08:44 ب.ظ
Hi there it's me, I am also visiting this web page daily, this web page is genuinely pleasant and the people are
genuinely sharing fastidious thoughts.
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر